Mechanisms underlying the perceived angular velocity of a rigidly rotating object
نویسندگان
چکیده
The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.
منابع مشابه
Rotating dotted ellipses: Motion perception driven by grouped figural rather than local dot motion signals
UNLABELLED Unlike the motion of a continuous contour, the motion of a single dot is unambiguous and immune to the aperture problem. Here we exploit this fact to explore the conditions under which unambiguous local motion signals are used to drive global percepts of an ellipse undergoing rotation. In previous work, we have shown that a thin, high aspect ratio ellipse will appear to rotate faster...
متن کاملMechanical Stresses in a Linear Plastic FGM Hollow and Solid Rotational Disk
In this paper, an analytical solution for computing the plastic & linear plastic stresses and critical angular velocity in a FGM hollow & solid rotating disk is developed. It has been assumed that the modulus of elasticity and yield strength were varying through thickness of the FGM material according to a power law relationship. The Poisson's ratio were considered constant throughout the thick...
متن کاملEffect of Surface Energy on the Vibration Analysis of Rotating Nanobeam
In this study, the free vibration behavior of rotating nanobeam is studied. Surface effects on the vibration frequencies of nanobeam are considered. To incorporate surface effects, Gurtin–Murdoch model is proposed to satisfy the surface balance equations of the continuum surface elasticity. Differential quadrature method is employed and in order to establish the accuracy and applicability of t...
متن کاملMotion fading is driven by perceived, not actual angular velocity
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular v...
متن کاملExtrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects
When an object moves behind a bush, for example, its visible fragments are revealed at different times and locations across the visual field. Nonetheless, a whole moving object is perceived. Unlike traditional modal and amodal completion mechanisms known to support spatial form integration when all parts of a stimulus are simultaneously visible, relatively little is known about the neural subst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 46 شماره
صفحات -
تاریخ انتشار 2006